Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively

  • A
    $\frac {14}{5}$ and $\frac {6}{5}$
  • B
    $\frac {14}{3}$ and $\frac {6}{5}$
  • C
    $\frac {6}{5}$ and $\frac {1}{3}$
  • D
    $\frac {3}{4}$ and $\frac {1}{4}$

Similar Questions

The vector $\overrightarrow P = a\hat i + a\hat j + 3\hat k$ and $\overrightarrow Q = a\hat i - 2\hat j - \hat k$ are perpendicular to each other. The positive value of $a$ is

  • [AIIMS 2002]

Obtain the scalar product of unit vectors in Cartesian co-ordinate system.

$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$

  • [AIPMT 2007]

Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$

In an clockwise system